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Abstract: - In this work, the mathematical modelling and simulation of some of the phenomena that affect the 
power quality is presented, Discrete Wavelet Transform is applied to obtain characteristic patterns of each 
signal. With these patterns several intelligent classifiers (neural networks and support vector machine) are 
trained and determine which of these they have better results in terms of predicting the class to which belongs 
each of said patterns. Knowing the energy distributions of the coefficients of detail, a general power quality 
index is formulated and compared with the existing ones.
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1 Introduction
There are phenomena that affect the Power Quality, 
and they are very harmful to electronic equipment, 
even for all devices that operate on the basis of 
electricity. Identification of these phenomena is 
essential to improve the Power Quality. In this paper 
the mathematical model for some of the phenomena 
that affect the power quality (LDLT, THDI, sag, 
flicker, swell) , in which they will get a processing 
by wavelet transform to obtain characteristics 
patterns in order to these processes be the input to 
different intelligent classifiers and to determine 
which kind they belong to.

In the studies presented in [1], [2], [3], [4], [5], 
[6], [7], [8], [9], [10] it is shown the use of 
intelligent classifiers have been common subject of 
study in quality applications energy, especially 
neural networks, likewise have they been limited to 
study these phenomena throughout measurement set 
rates, and they are being individual to each of the 
phenomena without any relationship between them. 

In this work we do comparison different 
intelligent classifiers in order to determine which it 
has better response in the identification of 
phenomena they affect the Power Quality, in fact a 
general index with which to give a measure of 
distortion is proposed signal to any phenomenon 
that affects this and they compare which of these 
phenomena has higher or lower severity.

2 Power Quality
The study of the Power Quality is the first and most 
important step to identify and to solve problems of
the power system. They can damage the equipment 
performance and reduce its reliability, reducing 
productivity and profitability, and may be damage 
the personnel’s security [11].

2.1 Harmonic
Harmonics are sinusoidal voltages or currents whose 
frequency is an integer multiple value in which the 
system is designed for (fundamental frequency, 
typically 50 or 60 Hz) [12]. A harmonic signal can 
be represented by equation 1.
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Where:
Y0: The amplitude of the DC component, which is 
usually zero in a stable state.
Yn: The rms value of the component of n rank.
n: It is the gap of the harmonic component.

2.2 SAG AND SWELL
Sags and swells are similar phenomena; the first 
corresponds to a decrease in signal amplitude
between 0.1 and 0.9 in pu, while the second goes to 
an increase between 1.1 and 1.8 in pu.
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2.3 Flicker
The Flicker is the "subjective impression of light 
fluctuation". Being a subjective effect implies that 
depends on a physiological phenomenon as it is 
relative to each observer and how it is affected by 
this phenomenon [13]. The flicker can be 
represented in equation 2.

   01 cosv t A M u t     (2)

Where:
A: The peak value of the voltage before fluctuation 
appearing.
M: It is the amplitude of the modulating signal.

0 : It is the frequency of the voltage.
 u t : It represents the frequency signal which 

modulates the voltage and whose amplitude is M, 
which varies between 0 and 1. Usually it is a square 
wave.

3. Artificial Intelligent Classifiers
The classifiers used in this work now are going to 
described.

3.1 Neural Networks
Artificial neural networks are parallel structures 
based on biological neurons. A neural network is 
composed of a multitude of simple elements, 
neurons, interconnected in a way more or less dense
and which all together performance can lead to a 
complex non-linear processing. Networks are able 
to adjust their behavior from experimental data and 
based on any Figs of merit which are very useful in
problems where its knowledge is incomplete or
varies over time [14].

In this study the following neural networks will 
be used as:

Multilayer Perceptron - Net 1
Radial basis function - Net 2
Cascade Forward Back propagation – Net 3

3.2 Support Vector Machine
Support Vector Machines (SVM) are a set of
learning algorithms based on statistical learning 
theory. This technique was initially a linear 
classifier double kind for separable data and finding
a linear model that separates the elements of both
kinds, then this technique was adapted to
classification problems with non-separable data and 
even for solving regression problems [14], [15].

For the present work, will be used double class 
settings (SVM1), Minimum Output Coding
(code_MOC) (SVM2), Error Correcting Output 
Coding (code_ECOC), (SVM3and Classification
One vs. All. (SVM4).

4. Simulations
The development of simulations of obtaining signals 
of each of the phenomena to be analyzed, in Fig. 1, 
2, 3 and 4 are shown as an example of each of the 
signals used in this study.
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Fig. 1: Signals with Harmonics
To simulate the harmonics, use the IEC 61000-3-6 
for the delineation of each component will be 
considered. An example of signal containing 
harmonics is shown in Fig. 1.

The simulated swell and sags phenomena, which 
set are the generation code , the duration of these at 
a random, more therefore variation ranges 
magnitude are set unit according to the above 
mentioned. In this way is presented in Fig. 2 and 
Fig. 3 sags and swells signals respectively.
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Fig. 2: Signals with Sags
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Fig. 3: Signals with Swell.
Flicker signals simulations are performed 
considering these signals described in Equation 2, as 
follows:

A = 1 p.u.
0 = 60 Hz.
 u t : Used two modulating signals, a sine 

and a square wave are used.
M: Variable value between 0 and 1.0
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Fig. 4: Signals with Flicker
Furthermore, the Wavelet Transform is applied to 
each of the signals in order to obtain the detailed 
coefficients. Using the described technique in [15], 
which it is shown in equation 3:
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(3)

Energy distribution of each of the decomposition 
levels and the signal are obtained, thus they can 
achieve characteristics for each of the kinds of 
signal patterns.

So in Fig. 5 can be seen the patterns of 
distribution of energy for harmonic signals, the 
signal are easily identified by having two peaks: one 
positive coefficient of detail 5 and a negative peak 
in the coefficient 7.
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Fig. 5: Characteristic patterns – Harmonics
In Fig. 6 the patterns of energy distribution for 
signals with swell are shown, it can be seen that this 
signal has only one positive peak in the coefficient 
of detail 7, and can be presented in some samples 
showing this peak at level 6.

1 2 3 4 5 6 7 8 9 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Families of deviation in energy distribution, for voltages with Swell

En
er

gy
 d

ev
ia

tio
n

Level

Fig. 6: Characteristic patterns – Swells

For the case of sags, characteristic patterns are 
shown in Fig. 7, for these it is seen that the peak in 
the coefficient of detail 7, in this case, is negative 
and is related to the source signal, instead of in 
swell, which is an elevation of the voltage level 
peak is positive and the sag which is a decrease of 
the voltage level peak is negative.

In Fig. 8 it can be seen the characteristic patterns 
of signal flicker, these patterns are the most 
complex than the previous since getting two positive 
peaks in the detail coefficients 6 and 8 and a 
negative peak pointer out in the coefficient 7.
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Fig. 7: Characteristic patterns - Sags
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Fig. 8: Characteristic patterns – Flicker

5. Results
The patterns obtained by means of the equation 3 
are the input data to the selected classifiers, 
therefore for the training of these 500 samples are 
used per class, for validation 200 and for the test 
1000 samples are used per class.

5.1 Neural Networks
Multilayer Perceptron: For this case the neural 
network will have three layers, It has 10, 4 and 1 
neuron in each layer.
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Fig. 9: Results MLP - Training
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Fig. 10: Results MLP – Validation
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Fig. 11: Results MLP – Test.

5.2 SUPPORT VECTOR MACHINE
In Fig. 12 comparing the expected elements and 
predicted for training case are shown, also in Fig. 13 
and Fig. 14 is presented the results for simulations 
of validation and test data are shown.
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Fig. 12: SVM Results 1 - Training
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Fig. 13: SVM Results 1 – Validation
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Fig. 14: SVM Results 1 – Test

5.3 Comparison of Errors
In Table 1 it can be appreciated that the network 1, 
in this case the multilayer perceptron, it is the 
simplest, the best results are presented in classes 
identification. Being the opposite case the radial 
network base, which has error 100% in the 
validation and testing, as it was previously earlier 
possibly due to overtraining. Moreover, in the case 
of SVM, the configuration that best results is 
presented using the Minimum Output Coding 
algorithm to decode the output and turn it into the 
required classes.

Table 2 the total errors of classifiers are shown , 
following Table 1, they were shown which are 
predictable that the neural network perceptron 
multilayer is even the one with the best results at the 
global level, even above any SVM of those were 
used to this work.

Table 1: Percentage of errors per class 
Classifier Harmonic Swell Sag Flicker
1Newff Net 0.9 1.9 1.1 3.3
2Newrb Net 98.7 50.9 62.7 66.2
3Newcf Net 1.8 1.8 0.8 2.0
SVM 1 4.5 3.5 5.2 5.8
SVM 1 one vs. all 4.7 0.5 4.6 14.3
SVM 3 ECOC 5.7 0.4 2.5 14.4
SVM 4 MOC 3.8 0.5 2.3 11.1
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Table 2: Percentage of Total Errors
Classifier Training Validation Test Total
1Newff Net 0.50 1.87 2.20 1.52
2Newrb Net 0.15 100 84.0 61.39
3Newcf Net 0.80 2.00 1.97 1.59
SVM 1 4.72 4.72 4.72 4.72
SVM 1 one vs. all 5.60 6.25 6.22 6.02
SVM 3 ECOC 4.95 6.00 5.50 5.48
SVM 4 MOC 4.00 4.37 4.80 4.39

6. Quality Power (PQ) Index
As it is mentioned in [16], [17], there are numerous 
indexes for each of the different phenomena affect 
the power quality, they are not related to each other , 
as for example , to keep in mind a signal present 
harmonics, it will be calculated the THD and 
another sign to show a swell and this will be 
determined using the variation of the amplitude or 
duration, there is no way , with only those values, to 
classify if it is the first or second signal the one 
presents the bigger affected. This whole process 
should have a number measures how close or far the 
signal is studied in reference to the pure sinusoidal 
signal, for which the index will score 0.0, and this 
becomes the reference, so the biggest, it is the 
general proposed index, it will be evidence that the 
signal in question is far from sinusoidal.

Thus by equation 4 defines the PQ index.

1
n

coefii
E

Index
n




(4)

Where:
icoefE : Is the energy of the detail coefficient i. 

Thus, the following results for 10 test signals are 
obtained. According to Fig. 15, we can deduce that 
the signal is 6, the lowest index, so it will be closer 
to the pure sinusoidal and instead of the signal 4 
which presents a greater distortion. As it is shown in 
Fig. 16.
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Fig. 15: Harmonic Parameters vs Index
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Fig. 16: Higher and lower harmonic distortion.
In Fig. 17 we see that the signal 1 is the lowest 

distortion index, while the signal 7 corresponds to 
the higher distortion, the difference between these 
signals can be seen in greater detail in Fig. 18, in 
this , it can be seen that while signal 1 neither  
amplitude variation nor shorter duration, if it  has 
lower index, this is because this signal does not 
show changes, but a change smooth, opposite occurs 
in the signal 7, where you can see that there is an 
abrupt jump at the appearance of swell. These 
sudden changes cause an increase in the energy of 
the coefficients, and therefore also an increase in the 
general index.
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Fig. 17: Parameters vs Swell. Index
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Fig. 18: greater than and less than– Swell
Likewise in Fig 19 is shown   the relationship 

between the measurement parameters and the 
proposed sags general index is approximated to a 
linear relationship. We also can see the signal 5 has 
the greater degree of distortion, while the signal 9 
has a lower index. In Fig. 20 can be seen in greater 
detail the greater and lower signals of distortion.
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Fig. 19: Parameters Sag vs. Index
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Fig. 20:– Greater and lower signals - Sag
In Fig. 21 the comparison between the index 100 
signals sags and 100 signals swell are shown, they 
can be seen, the data are in the range 0.2 to 0.4, even 
with a small deviation, reaching the maximum index
to a value close to 2.0.

Comparison between indexes of harmonics and 
flicker are shown in Fig. 22, these values are given 
in the sags and swell greater range, since the first 
harmonics and flickers have values between 0 and 
18, the harmonics have higher display distortion, 
which is compared with the other three signals to 
other signals., they are more distant from the pure 
sinusoidal signal and on the contrary, the swell 
present s the lowest index general way.
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Fig. 21: Comparison Index - Swell and Sag
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Fig. 22. Comparison Index - Swell and Sag

6. Conclusions
In this work the first 10 detail coefficients of 
wavelet transform since these allow obtaining 
different for each of the signal patterns are used. 
Also, the energy distribution of each of the 
coefficients can further differentiate patterns since 
otherwise they will have the same shape, with a 
peak in the coefficient of detail 7, in which the 
largest amount is presented energy.

In the group of neural networks, the best 
classifier was the multilayer perceptron, the simplest 
of the network analyzed in three steps, training, and 
validation and testing. For the case of Support 
Vectors Machine, the best performing configuration 
was presented Minimum Output Coding.

Mainly, the research conducted in the work it 
was  identified the best classifier is undoubtedly the 
multilayer perceptron and having a percentage of 
total error of 1.52 %, followed closely by Cascade 
Forward Back propagation with an error of 1.59 %. 
Likewise, and as the main distinguishing feature of 
this work, a general Power Quality index for 
comparing all phenomena that disturb the signal , 
where the ideal value is zero , which is 
corresponding to the sine wave is established , this 
index in proportion to classical indexes of each of 
the disturbances  being greater for the phenomena  
harmonics and flicker  being greater magnitude, 
since  these  signals with respect to the greater 
distortion pure sine wave , on the contrary are the 
sags and swell those with lower index. 
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